Evaluation of the viability of seeds preserved for 20 years

Magdalena Vicens Fornés
JARDÍ BOTÀNIC DE SÓLLER
Sóller Botanic Garden
Sóller Botanic Garden
Seed Bank
Seed bank technology
Seed collecting program

- Wild priority species:
 - Endangered
 - Endemic
 - Rare in Balearics
 - Habitat restoration
 - Crop wild relatives
The seed collection in 1990

305 ACCESSIONS COLLECTED IN 1990:
- 45 taxa
- 36 genera (23 families)

Includ 26 endemic taxa from Balearics.

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARACEAE</td>
<td>Arum</td>
<td>pictum sagittifolium</td>
</tr>
<tr>
<td>CARYOPHYLLACEAE</td>
<td>Silene</td>
<td>mollissima mollissima</td>
</tr>
<tr>
<td>COMPOSITAE</td>
<td>Carduncellus</td>
<td>dianius</td>
</tr>
<tr>
<td>COMPOSITAE</td>
<td>Femeniasia</td>
<td>balearica</td>
</tr>
<tr>
<td>EUPHORBIACEAE</td>
<td>Euphorbia</td>
<td>margalidiana</td>
</tr>
<tr>
<td>HYPERICACEAE</td>
<td>Hypericum</td>
<td>balearicum</td>
</tr>
<tr>
<td>LAMIACEAE</td>
<td>Phlomis</td>
<td>italica</td>
</tr>
<tr>
<td>LAMIACEAE</td>
<td>Teucrium</td>
<td>asiaticum</td>
</tr>
<tr>
<td>LAMIACEAE</td>
<td>Teucrium</td>
<td>cossonii punicum</td>
</tr>
<tr>
<td>LAMIACEAE</td>
<td>Teucrium</td>
<td>subspinosum</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Anthyllis</td>
<td>hystrix</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Anthyllis</td>
<td>vulneraria font-querii</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Dorycnium</td>
<td>fulgurans</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Genista</td>
<td>dorycnifolia grosii</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Hippocrepis</td>
<td>grosii</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Medicago</td>
<td>citrina</td>
</tr>
<tr>
<td>LEGUMINOSAE</td>
<td>Vicia</td>
<td>bifoliolata</td>
</tr>
<tr>
<td>PAEONIACEAE</td>
<td>Paeonia</td>
<td>cambessedesii</td>
</tr>
<tr>
<td>PLUMBAGINACEAE</td>
<td>Limonium</td>
<td>alcudianum</td>
</tr>
<tr>
<td>PLUMBAGINACEAE</td>
<td>Limonium</td>
<td>barceloi</td>
</tr>
<tr>
<td>PLUMBAGINACEAE</td>
<td>Limonium</td>
<td>camposanum</td>
</tr>
<tr>
<td>RUFIACEAE</td>
<td>Galium</td>
<td>crespianum</td>
</tr>
<tr>
<td>THYMELAEACEAE</td>
<td>Daphne</td>
<td>rodriguezii</td>
</tr>
<tr>
<td>UMBELLIFERAE</td>
<td>Magydaris</td>
<td>panacifolia femeniesii</td>
</tr>
<tr>
<td>UMBELLIFERAE</td>
<td>Pastinaca</td>
<td>lucida</td>
</tr>
<tr>
<td>UMBELLIFERAE</td>
<td>Thapsia</td>
<td>garganica</td>
</tr>
</tbody>
</table>
Selection for testing viability

- At least one accession for each taxon collected in 1990 had been chosen.
- The accessions with less than 500 seeds had been discarded.
- At least one accession from each endemic taxa.
The aim of the project

1. Analyze the conservation status of the old collection with:
 a) Obtaining the germination % of each accession.
 b) Know the germination speed
 c) Viability

2. Ensuring that existing storage conditions provide effective “ex situ” conservation of Balearic species:
 a) Knowing the percentages of dormancy and the method to germinate these accessions.
 b) Verify if there are not any accessions that haven’t germination capacity.
Methodology: Germination and Viability tests

Conditions:
- Temperatures:
 - 18°C
 - 15°C
 - 10/20°C
- Photoperiode:
 - 16/8 light/dark

100 seeds
- 4 replicates
- Agar-agar at 0.6%
- Record when the radicle was at least 2mm long.

Tests with a result of 75% of germination were considered as good.
Methodology: Break the dormancy

- Mechanical scarification removing 1–2mm² of the seed coat using scalpel.
- Cool and humid stratification: 56 days at 4°C.
- Gibberelins treatment: GA₃ at 250 ppm in the growing medium.
- Seeds immersed in distilled water heated to 100°C.
Methodology: Categories of seeds

The non germinated seeds, were qualified in 5 categories after a cut-test:

- Imbibed
- Not imbibed
- Mouldy: died, seeds in poor conditions.
- Infested: fungi, insects, etc.
- Empty.
Methodology: Indexes used

- Germination %.
- Germination speed \((T_{50}) \). Formula by Thanos & Doussi (1995).
- Seed viability %.
- Dormancy Index. Formula by Offord’s et al. (2004): \(1-\text{(seed germ\%-viability\%)} \)
RESULTS

GERMINATION %:
- 62.5% (35) of tested accessions have had at least a 75% of germination.

PRE-SOWING TREATMENTS:
- In 32% (18) of the accessions, the highest germ. % was reached without any pre-sowing treatment.
 - In some cases, in a second test, only pre-sowing treatment has been used to have better germination speed (T_{50}).
- In 30% (17) of the accessions, the highest germ. % was reached by mechanical scarification using scalpel.
RESULTS

- In accessions with germination % lower than 75%, tetrazolium test and cut-test showed that viability was much higher, except for:
 - One accession of *Pastinaca lucida* with only 14% of viability.
 - One accession of *Phlomis italica* with only 11% of viability.
RESULTS: germination % by families
RESULTS: germination speed % by families
RESULTS: viability % by families
RESULTS: remaining dormancy after pre-sowing treatments
The quality of the seed collection estimated by its viability is so good in all the tested accessions.

The accessions with low germination % and high viability %, exhibited some degree of dormancy after pre-sowing treatments.

Need further research in order to better understand the dormancy and germination protocols after conservation process, mainly in the families:
 - Aristolochiaceae
 - Cneoraceae
 - Ephedraceae
 - Rhamnaceae
 - Thymelaeaceae
This study has been supported by:

Programa d’Accions Complementàries 2009.